sábado, 12 de julio de 2014

"Conjuntos" y "Operaciones con Conjuntos"

Conjuntos 

Un conjunto es cualquier agregado o colección de objetos o entes de cualquier índole, con o sin relación entre ellos.
- Requisitos para que exista un conjunto:
1. La colección de objetos debe estar bien definida (la respuesta debe ser clara y segura "si" o "no" cuando se pregunta, pertenece al conjunto? a un objeto cualquiera).
2. Ningún objeto del conjunto se debe contar mas de una vez. (En general, estos elementos deben ser distintos, y si uno de ellos se repite debe considerarse solo una vez).

Ejemplo: "a" se refiere a los jugadores del equipo Juventus de fútbol; la simbologia es:
- A= {jugadores del equipo Juventus de fútbol}

  • El signo igual (=) se lee como "es el",
  • Las llaves significan "conjunto formado por los" y
  • Lo que queda dentro de las llaves es la "descripción de los elementos"
Elementos:
Son los objetos individuales que forman un conjunto. Se simbolizan con letras minúsculas como {a, b, c,...}.

Ejemplo: Si el activo circulante de una empresa esa formado por caja (c), bancos (b) y documentos por cobrar (d), se indica el conjunto como:
- A= {c, b, d}

Pertenencia: 
Es la relación que existe entre un conjunto y sus elementos, se simboliza con la letra griega "epsilon" (E).

Ejemplo: 
- a E A ---- "a es un elemento perteneciente de A" 


Especificación de conjuntos:
Para especificar un conjunto se recurre usualmente a uno de los siguientes métodos:
  • Método de enumeración, de tabulacion o "por extensión": consiste en listar todos lo elementos separados por comas y encerrados en llaves.
  • Método descriptivo, de construcción de conjuntos o "por comprensión": consiste en encerrar entre llaves una propiedad que exprese los requisitos que debe satisfacer un elemento para pertenecer al conjunto; utilizando valores de "x" y "|" que significa "tal que". Expresado de esta manera: ejemplo: si V es el conjunto de vocales del abecedario, se escribe:  V= {x|x es una vocal del abecedario.
Ejemplo de "método de enumeración":
- Si V es el conjunto de las vocales del abecedario, se escribe: V= {a, e, i, o, u}

Mi opinión acerca del tema visto? los conjuntos los vemos en matemática de manera diferente a como lo vemos en estrategias de resolución de problemas. Aquí nos muestran lo esencial de los conjuntos; con la base aprendida podemos pasar al siguiente paso que serian conjuntos matemáticos que van siendo muy parecidos y con un nivel de dificultad casi igual; en lo personal es un tema entretenido y aunque requiere de concentración y atención en los problemas, desarrollamos nuestro lado lógico del cerebro. 
Sera fácil o difícil su comprensión y su aplicación? su comprensión es bastante sencilla al igual que su aplicación una vez entendiendo cual es el fin de los conjuntos.
Es pertinente y/o aplicable a futuros problemas que se nos presenten? problemas de conjuntos es mas fácil encontrarlos en la vida profesional cotidiana. Los conjuntos los veremos e incluso los aplicaremos en un futuro con elementos que lo constituyan según nuestra carrera, nuestro trabajo o cualquier índole que requiera de los conjuntos. 

Operaciones con conjuntos 

Complementación:
Sea B un conjunto cualquiera del conjunto universo, U. El complemento de B con respecto a U se define como el conjunto de elementos de U que no pertenecen a B.

Ejemplo: 
Sea U= {1,2,3,4,5,6,7} y A= {1,3,5,7}; B= {2,4}; C= {1,2,3}
A'= {2,4,6}
B'= {1,3,5,6,7}
C'= {4,5,6,7}
U'= {conjunto vacío} 

Intersección:
Sean A y B dos conjuntos cualesquiera del conjunto universo, U. La intersección de dos conjuntos, A y B, es el conjunto de los elemento de U que son miembros tanto de A como de B. Es el conjunto formado por los elementos comunes a ambos conjuntos. 

Unión: 
Sean P y Q dos conjuntos cualesquiera del conjunto universo. La unión esta formada por los elementos de ambos conjuntos contados una sola vez.

Diferencia: 
Sean A y B dos subconjuntos cualesquiera del conjunto universo. La diferencia de dos conjuntos A y B es el conjunto de los elementos que pertenecen a A pero no a B. El conjunto diferencia se denota: A-B. La diferencia simétrica es igual a : (A-B) U (B-A).

Cardinalidad: 
Con la notación n(A) se indica "el numero de elementos del conjunto A".

Ejemplo:  
Si A= {a,b,c}, entonces n(A)= 3.

Diagramas de Venn:
El procedimiento que consiste en dibujar rectángulos, círculos u otras figuras para representar tales relaciones u operaciones se conoce como Diagramas de Venn. 

No hay comentarios:

Publicar un comentario